An Improved Power Quality Disturbance Detection Using Deep Learning Approach

Author:

Sekar Kavaskar1,Kanagarathinam Karthick2ORCID,Subramanian Sendilkumar3ORCID,Venugopal Ellappan4ORCID,Udayakumar C.5ORCID

Affiliation:

1. Head-Power System Studies, KNR Engineers (INDIA) Private Limited, Chennai, India

2. Department of Electrical and Electronics Engineering, GMR Institute of Technology, Rajam, India

3. Department of Electrical and Electronics Engineering, S. A. Engineering College (Autonomous), Chennai, India

4. Department of Electronics and Communication Engineering, School of Electrical Engineering and Computing, Adama Science and Technology University, Adama, Ethiopia

5. Department of Electrical and Electronics Engineering, JKK Nattraja College of Engineering and Technology, Komarapalayam, India

Abstract

Recently, the distribution network has been integrated with an increasing number of renewable energy sources (RESs) to create hybrid power systems. Due to the interconnection of RESs, there is an increase in power quality disturbances (PQDs). The aim of this article was to present an innovative method for detecting and classifying PQDs that combines convolutional neural networks (CNNs) and long short-term memory (LSTM). The disturbance signals are fed into a combined CNN and LSTM model, which automatically recognizes and classifies the features associated with power quality disturbances. In comparison with other methods, the proposed method overcomes the limitations associated with conventional signal analysis and feature selection. Additionally, to validate the proposed method's robustness, data samples from a modified IEEE 13-node hybrid system are collected and tested using MATLAB/Simulink. The results are good and encouraging.

Publisher

Hindawi Limited

Subject

General Engineering,General Mathematics

Cited by 9 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3