Development and Parametric Analysis of Vibration System Controlled by Hydraulic Shock Rotary Vibrator

Author:

Ren Qichao1ORCID,Kou Ziming1ORCID,Wu Juan1ORCID,Li Tengyu1ORCID,Yahya Waled1ORCID

Affiliation:

1. National-local Joint Laboratory of Mining Fluid Control Engineering, School of Mechanical and Vehicle Engineering, Taiyuan University of Technology, No. 79 Yingze West Street, Taiyuan, Shanxi 030024, China

Abstract

The improvement of the energy utilization rate of a hydraulic vibration-excitation system is critical to the research and development of hydraulic vibration equipment. In this paper, a hydraulic vibration-excitation system controlled by a new type of shock rotary vibrator is proposed. A system model considering the pipeline effect was established for the hydraulic shock phenomenon. In addition, the model was compared with the one that does not consider the pipeline effect. The effectiveness of the proposed model was verified experimentally. Finally, the shock phenomenon during the process of switching the working state of the vibrator and the influence of certain important parameters of the system on the vibration output were investigated based on the proposed model. The results showed that (1) the hydraulic shock phenomenon occurred when the working state of the hydraulic vibrator was switched and (2) the hydraulic shock wave could effectively improve the excitation force of the system. The excitation force increased with an increase in the oil supply pressure, spindle speed, and load. However, it was negatively correlated with the spring stiffness. The amplitude of the vibration waveform output was positively correlated with the oil supply pressure and negatively correlated with the spindle speed and load. The amplitude first increased and then decreased as the stiffness of the vibration spring increased. The only influence of the precompressed length of the spring on the system output was its alteration of the vibration center of the system output vibration.

Funder

National Natural Science Foundation of China

Publisher

Hindawi Limited

Subject

Mechanical Engineering,Mechanics of Materials,Geotechnical Engineering and Engineering Geology,Condensed Matter Physics,Civil and Structural Engineering

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3