Performance Enhancements of Fully Inkjet-Printing Technology for Antenna-in-Package and Substrate Integrated Waveguides

Author:

Chen Yen-Sheng1ORCID,Huang Sheng-Xue1

Affiliation:

1. Department of Electronic Engineering, National Taipei University of Technology, Taipei, Taiwan

Abstract

A fully inkjet-printing technology is applied to antenna-in-package (AiP) and substrate integrated waveguide (SIW) to enhance the performance of three components, including via holes, wire bonding, and flexible antenna arrays. First of all, earlier studies utilize shorting pins for the conductive pathway in high-density AiP and SIW, but this requires an additional procedure to plate the conductor. We propose a mechanical approach to form a cylindrical hole, plating the surface with silver nanoparticles and realizing the equivalent circuit model of the shorting pin. The proposed approach does not require high alignment sensitivity or the precise control of laser power level. Second, fully inkjet-printed wire bonding is proposed for the system on the package. The proposed technique not only reduces the discontinuity but also enables a fabrication without additional assembly. Third, the proposed technique is implemented for antenna development, which shows desirable performance with reduced fabrication complexity. The proposed technology is validated by microstrip lines, SIWs, SIW cavity slots, and flexible 4 × 4 patch arrays fabricated on various substrates including RO 4003C, polyimide, and polyethylene naphthalate. For comparison purposes, conventional approaches using printed circuit boards are also implemented and tested. The results indicate the generality and capability of the proposed technique.

Funder

Ministry of Science and Technology, Taiwan

Publisher

Hindawi Limited

Subject

Electrical and Electronic Engineering

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Additive Integration with Aerosol-Jet Printed SIWs;2023 53rd European Microwave Conference (EuMC);2023-09-19

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3