A Stepwise Discrimination Method of Multi-Index in Landslide Stability Monitoring

Author:

Chen Hao12ORCID,Wu Honggang2ORCID

Affiliation:

1. School of Civil Engineering, Lanzhou University of Technology, Gansu 730000, China

2. China Northwest Research Institute Co. Ltd. of CREC, Lanzhou, 730070 Gansu, China

Abstract

The deep displacement monitoring can directly reflect the deformation information inside the slope and can provide an important evidence for the identification of landslide stability. Based on the monitoring data on deep displacement of borehole, there are many monitoring indicators that can reflect the slope state. However, these indicators have their own applicability, and they are independent of each other, which cannot fully reflect the true movement state of the landslide. Therefore, it is necessary to establish a scientific method to give full play to the strengths of each monitoring index and improve the accuracy of identification for landslide stability. Here, the near-surface accumulative displacement, displacement rate, kinetic energy, and the rate of change of kinetic energy are selected as main monitoring indicators to establish a multi-index stepwise discrimination method for landslide stability in this study. This method analyzes the total deformation characteristics and movement trend of landslide from three aspects: surface displacement, internal displacement rate, and slope energy. Relied on the monitoring data on deep displacement of borehole of a landslide in Wushan County, Chongqing, China, this study finds that a single index is easily disturbed by external factors, causing the abnormal mutation in curve which affects analysis of landslide deformation. The variation characteristics of curve among multiple indexes can be mutually corroborated, effectively identify the abnormal fluctuation of the curve, and avoid the identification errors of landslide movement state. In addition, we also found that when there is an obvious sliding surface on the slope, the displacement rate curve will cluster at the sliding surface along the depth direction in this study. And this feature can be used as an important basis for the identification of sliding surface. The method proposed in this study can provide reference and suggestions for the actual treatment of landslide and monitoring data on deep displacement mining.

Funder

Science and technology development project of China Railway Ninth Bureau Group Co., Ltd

Publisher

Hindawi Limited

Subject

General Earth and Planetary Sciences

Reference31 articles.

1. Characteristics of landslide displacement-time curve by physical simulation experiment;X. Dong;Journal of Engineering Geology,2015

Cited by 4 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3