Logistics Information Traceability Mechanism of Fresh E-Commerce Based on Image Recognition Technology

Author:

Zhang Xin1ORCID,Shao Pengfei2

Affiliation:

1. College of Business, Jiaxing University, Jiaxing, 314001 Zhejiang, China

2. Zhejiang Wanli University, Ningbo, 315100 Zhejiang, China

Abstract

Logistics migration and movement require precise information updates for traceability and visibility of goods through E-commerce platforms. Computer vision and digital image processing techniques are used for visual identification and tracking through different warehouses and delivery points. In this article, an incessant visualized tracking scheme (IVTS) is designed for identifying and tracking E-commerce logistics throughout the migration points. This scheme endorsed computer vision technology for logistics recognition and labelled data detection. In this scheme, the labelled logistics data is verified for its similarity in different migrating locations and to the endpoint. Based on the dimensional features and regional-pixel similarity factor, it is verified using the deep neural network. This learning process identifies dimensional variations due to logistics displacement and position suppressing the similarity variations. It is performed based on the migration and information available to prevent tracking errors. For the varying locations and logistics displacement, the error pixel regions are identified and trained for possible similarity detection. The proposed scheme effectively improves visual accuracy, tracking maximization, and logistics detection by reducing dimensional errors.

Funder

Chinese National Funding of Social Sciences

Publisher

Hindawi Limited

Subject

Biomedical Engineering,Bioengineering,Medicine (miscellaneous),Biotechnology

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3