Research and Implementation of Indoor 3D Positioning Algorithm Based on LED Visible Light Communication and Corresponding Parameter Estimation

Author:

Li Yi1ORCID

Affiliation:

1. School of Information Engineering, Xi’an University, Xi’an, Shaanxi, China

Abstract

In the era of mobile Internet, the application of various positioning-based location service systems is becoming more and more common. In addition, the traditional radio positioning system is limited in the use of special environments such as mines, hospitals, and gas stations, and long-term electromagnetic radiation can cause potential damage to the human body. Compared with the traditional wireless positioning technology, VLC-based positioning technology has a good application prospect in the field of indoor wireless positioning. Compared with traditional radio positioning technology, the use of VLC technology to achieve indoor positioning is different in that the system design and layout need to consider the basic needs of indoor lighting; that is, the layout of multiple visible light sources in the room should meet the minimum illumination requirements of any area of the room. Since the layout structure of the light source that only considers the lighting requirements or only considers the positioning accuracy requirements is not the same, in the design process of the indoor visible light wireless positioning system, it is necessary to consider the overall optimization layout of multiple indoor visible light sources under the conditions of lighting and positioning constraints. This paper mainly optimizes indoor positioning from the aspects of light source layout, reflected light intensity distribution, and noise model.

Publisher

Hindawi Limited

Subject

General Mathematics,General Medicine,General Neuroscience,General Computer Science

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Design and Validation of Tunnel Positioning Scheme Based on BeiDou Pseudo-Satellite System;2024 5th International Seminar on Artificial Intelligence, Networking and Information Technology (AINIT);2024-03-29

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3