Numerical Simulations for Lithium-Ion Battery Pack Cooled by Different Minichannel Cold Plate Arrangements

Author:

Li Yulong1,Bai Minli1,Zhou Zhifu2,Wu Wei-Tao3,Gao Linsong1,Li Yang1,Yang Yunjie1,Li Yubai1ORCID,Song Yongchen1ORCID

Affiliation:

1. Key Laboratory of Ocean Energy Utilization and Energy Conservation of Ministry of Education, Dalian University of Technology, Dalian 116023, China

2. State Key Laboratory of Multiphase Flow in Power Engineering, Xi’an Jiaotong University, Xi’an 710049, China

3. School of Mechanical Engineering, Nanjing University of Science and Technology, Nanjing 210094, China

Abstract

In real electric vehicles, the arrangement of liquid-cooled plates not only influences the thermal performance of the battery pack but also relates to the energy consumption of the BTMS and the compactness of the whole battery pack. In this study, design A, design B, design C, and design D, a total of four different arrangement designs of battery thermal management based on liquid-cooled plates with microchannels, are proposed for a 35 V battery pack composed of 12 LiFePO4 pouch battery cells connected in series, and the corresponding three-dimensional electrical-thermal-fluid model is established for numerical study. The cooling effects of the four designs are discussed and compared in terms of discharge rate, contact thermal resistance, and external short circuit. For design D, cold plates are placed in front of each battery cell. The results show that design D achieves the best cooling effect with the lowest power consumption compared to the other three designs under 0.5C, 1.0C, and 2.0C discharge rate. Its maximum temperature is about 30°C, and maximum temperature difference is under 5°C. The reduction in contact thermal resistance has different effects and magnitudes for different designs with different cold plate arrangements, but the overall effect is small. In the extreme condition of external short circuit, for design D, increasing the mass flow rate can reduce the maximum temperature of design D from 76.6°C by 27.5% to 55.5°C and the temperature difference from 35.0°C by 23.4% to 26.8°C. Selecting the proper coolant flow rate can keep the maximum temperature and temperature gradient on the battery pack of design D within tolerable level, and increasing the flow rate helps to enhance the cooling effect. For the other three designs, the maximum temperatures and temperature gradients exceeded 90°C and 40°C under the external short circuit condition, and increasing the flow rate has very little effect on the performance enhancement.

Funder

Fundamental Research Funds for the Central Universities

Publisher

Hindawi Limited

Subject

Energy Engineering and Power Technology,Fuel Technology,Nuclear Energy and Engineering,Renewable Energy, Sustainability and the Environment

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3