Affiliation:
1. College of Mechanical and Electrical Engineering, Shandong University of Science and Technology, Qingdao, Shandong 266590, China
2. College of Chemical and Environmental Engineering, Shandong University of Science and Technology, Qingdao 266590, China
Abstract
In this work, based on the Reynolds stress model (RSM) of the computational fluid dynamics (CFD) software Fluent and experimental method, the velocity field, pressure characteristics, split ratio, and separation efficiency of the hydrocyclone are analyzed under different gas-liquid ratios (GLRs). For the inlet velocity, the lower limit is ascertained by the flow field stability, the upper limit is largely determined by the energy consumption, and the optimum range is 4 m/s to 10 m/s. Within the optimum range, the peak value of tangential velocity increases while the GLR increases, whereas the pressure and pressure drop decrease. With the increase in the GLR, the axial velocity decreases, and the locus of zero vertical velocity shifts inward. The increase in the GLR causes more gas to collect at the vortex finder, which hinders the discharge of the solid-liquid mixture from the overflow, and the larger the GLR, the faster the decrease in the split ratio. The separation efficiency of particles with a particle size of 15 μm is increased by 6.75%, and the separation efficiency of particles with a particle size of 30 μm is increased by 0.57%. Meanwhile, the separation efficiency is increased by 2.43%, and the cut size d50 is reduced as the GLR increases.
Funder
National Natural Science Foundation of China
Subject
General Engineering,General Mathematics
Cited by
5 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献