Differential Human Learning Optimization Algorithm

Author:

Zhang Pinggai12ORCID,Wang Ling2ORCID,Du Jiaojie2,Fei Zixiang3ORCID,Ye Song1,Fei Minrui2,Pardalos Panos M.4

Affiliation:

1. Industrial Process Control Optimization and Automation Engineering Research Center, School of Electronic Engineering, Chaohu University, Chaohu, Anhui 238024, China

2. Shanghai Key Laboratory of Power Station Automation Technology, School of Mechatronics Engineering and Automation, Shanghai University, Shanghai 200444, China

3. School of Computer Engineering and Science, Shanghai University, Shanghai 200444, China

4. Center for Applied Optimization, Department of Industrial and Systems Engineering, University of Florida, Gainesville, FL 32611, USA

Abstract

Human Learning Optimization (HLO) is an efficient metaheuristic algorithm in which three learning operators, i.e., the random learning operator, the individual learning operator, and the social learning operator, are developed to search for optima by mimicking the learning behaviors of humans. In fact, people not only learn from global optimization but also learn from the best solution of other individuals in the real life, and the operators of Differential Evolution are updated based on the optima of other individuals. Inspired by these facts, this paper proposes two novel differential human learning optimization algorithms (DEHLOs), into which the Differential Evolution strategy is introduced to enhance the optimization ability of the algorithm. And the two optimization algorithms, based on improving the HLO from individual and population, are named DEHLO1 and DEHLO2, respectively. The multidimensional knapsack problems are adopted as benchmark problems to validate the performance of DEHLOs, and the results are compared with the standard HLO and Modified Binary Differential Evolution (MBDE) as well as other state-of-the-art metaheuristics. The experimental results demonstrate that the developed DEHLOs significantly outperform other algorithms and the DEHLO2 achieves the best overall performance on various problems.

Funder

National Natural Science Foundation of China

Publisher

Hindawi Limited

Subject

General Mathematics,General Medicine,General Neuroscience,General Computer Science

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3