The Carotenogenic Dunaliella salina CCAP 19/20 Produces Enhanced Levels of Carotenoid under Specific Nutrients Limitation

Author:

Saha Sushanta Kumar1ORCID,Kazipet Naresh1,Murray Patrick1

Affiliation:

1. Shannon Applied Biotechnology Centre, Limerick Institute of Technology, Moylish Park, Limerick V94 E8YF, Ireland

Abstract

Dunaliella salina is the popular microalga for β-carotene production. There is still a growing demand for the best strain identification and growth conditions optimization for maximum carotenoids production. Some strains are noncarotenogenic while other strains may respond differently to applied growth conditions and produce enhanced carotenoid levels. This study tested the carotenogenic ability of Dunaliella salina CCAP 19/20 under sixteen stress conditions and certain biochemical changes in response to specific stress were investigated. This study identified the above strain as carotenogenic, which produces maximum carotenoids under high light (240 μmol photons m−2 sec−1) when combined nitrogen and micronutrients (Cu or CuMn) were limited. Based on the intensity of extracted ions chromatograms, lutein (m/z 568.4357) appears as the major carotenoid followed by β-carotene (m/z 536.4446) and α-carotene (m/z 536.4435). A polypeptide of 28.3 kDa appeared while another polypeptide of 25.5 kDa disappeared in stress cells as compared to noncarotenogenic cells. Expression levels of antioxidative-enzyme superoxide dismutase-1 (SOD1, H2O2-resistant) remained identical, while the prominent H2O2-sensitive isoforms SOD2 and SOD3 were downregulated during carotenogenic conditions. Overall, increased carotenoids levels might be due to the response of differential expression of specific polypeptides and retention of H2O2-resistant SOD, which eventually might help the organism to thrive in the tested stress conditions.

Funder

Enterprise Ireland

Publisher

Hindawi Limited

Subject

General Immunology and Microbiology,General Biochemistry, Genetics and Molecular Biology,General Medicine

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3