Recovery of Boron from Underground Brine by Continuous Centrifugal Extraction with 2-Ethyl-1,3-hexanediol (EHD) and Its Mechanism

Author:

Fan Xuebing1,Yu Xiaoping1ORCID,Guo Yafei1ORCID,Deng Tianlong1ORCID

Affiliation:

1. Tianjin Key Laboratory of Marine Resources and Chemistry, College of Chemical Engineering and Materials Science, Tianjin University of Science and Technology, Tianjin 300457, China

Abstract

In order to economical and environmental-friendly recycle of boron from underground brine, the extraction of boron was carried out in this work by the continuous centrifugal technique using 2-ethyl-1,3-hexanediol (EHD) + sulfonated kerosene (SK) extraction system, and the extraction mechanism was also investigated by the combination of FT-IR with slope method. The results showed that boron can be effectively extracted from underground water with the concentration of boron 5.43 g·L−1 by five-stage centrifugal extraction using 30% EHD + 70% SK at pH = 2.0–3.0, R(O/A) = 1 : 2, and the extraction rate reached 98.46%. Boron in the organic phase can be well five-stage back-extracted by 1.0 mol·L−1·NaOH at R(O/A) = 1 : 1 with a back-extraction rate of 97.00%. About 88.32% boron in the aqueous phase obtained by back-extraction can be recycled in H3BO3 form by evaporation crystallization after acidified to pH < 2.5. The extraction mechanism indicated that the extraction is completed mainly based on the esterification reaction between alcoholic hydroxyl in EHD and -OH in B(OH)3 at the stoichiometric ratio 1 : 1 to generate a stable six-membered ring structure of boric acid ester.

Funder

National Natural Science Foundation of China

Publisher

Hindawi Limited

Subject

General Chemistry

Cited by 14 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3