Affiliation:
1. Shandong University, Geotechnical and Structural Engineering Research Centre, Jinan 250100, China
2. Key Laboratory for Bridge and Tunnel of Shaanxi Province, Chang’an University, Middle-Section of Nan’er Huan Road, Xi’an 710064, China
Abstract
Water inrush has become one of the bottlenecks restricting tunnel construction. Among various advanced forecasting techniques, the direct current method is more cost-effective and sensitive to water-bearing structures. It has been widely used in exploring water inrush disasters in practical engineering. Although traditional resistivity linear inversion methods are reasonably practical, they usually suffer from volume effects and cannot accurately locate the location and morphology of water-bearing bodies. Therefore, nonlinear techniques such as deep learning have recently become popular to directly approximate the inversion function by learning the mapping of apparent resistivity data to the geoelectric model. This work presents a novel deep learning-based electrical approach that combines resistivity and polarizability to estimate water-bearing location and morphology. Specifically, we design an encoder-decoder network. A shared encoder extracts features from the input data, two encoders output resistivity, and polarizability models, respectively, and fine-tuned collinear regularization for both outputs reduces solutions’ multiplicity. Compared with traditional linear inversion methods and independent parameter inversion, our proposed joint inversion method shows superiority in locating and delineating anomalous bodies.
Funder
Natural Science Foundation of Shandong Province
Subject
Civil and Structural Engineering
Cited by
1 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献