Scene Text Recognition Based on Bidirectional LSTM and Deep Neural Network

Author:

Kantipudi MVV Prasad1ORCID,Kumar Sandeep2ORCID,Kumar Jha Ashish3ORCID

Affiliation:

1. Department of E&TC, Symbiosis Institute of Technology, Symbiosis International (Deemed University), Pune 412115, India

2. Department of Computer Science and Engineering, Koneru Lakshmaiah Education Foundation, Vaddeswaram, AP, India

3. Nepal Engineering College, Kathmandu, Nepal

Abstract

Deep learning is a subfield of artificial intelligence that allows the computer to adopt and learn some new rules. Deep learning algorithms can identify images, objects, observations, texts, and other structures. In recent years, scene text recognition has inspired many researchers from the computer vision community, and still, it needs improvement because of the poor performance of existing scene recognition algorithms. This research paper proposed a novel approach for scene text recognition that integrates bidirectional LSTM and deep convolution neural networks. In the proposed method, first, the contour of the image is identified and then it is fed into the CNN. CNN is used to generate the ordered sequence of the features from the contoured image. The sequence of features is now coded using the Bi-LSTM. Bi-LSTM is a handy tool for extracting the features from the sequence of words. Hence, this paper combines the two powerful mechanisms for extracting the features from the image, and contour-based input image makes the recognition process faster, which makes this technique better compared to existing methods. The results of the proposed methodology are evaluated on MSRATD 50 dataset, SVHN dataset, vehicle number plate dataset, SVT dataset, and random datasets, and the accuracy is 95.22%, 92.25%, 96.69%, 94.58%, and 98.12%, respectively. According to quantitative and qualitative analysis, this approach is more promising in terms of accuracy and precision rate.

Publisher

Hindawi Limited

Subject

General Mathematics,General Medicine,General Neuroscience,General Computer Science

Reference32 articles.

1. A Detailed Analysis of Optical Character Recognition Technology

2. Text detection and recognition in imagery: a survey;Q. Ye;IEEE Transactions on Pattern Analysis and Machine Intelligence,2015

3. Text detection in images based on unsupervised classification of high-frequency wavelet coefficients

4. End-to-end text recognition with hybrid HMM max out models;O. Alsharif

Cited by 16 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3