Preparation of Ti/SnO2-Sb/Rare Earth Electrodes Containing Different Contents of Ni Intermediate Layer for Efficient Electrochemical Decolorization of Rhodamine B

Author:

Wai Thet Phyo1ORCID,Yin Yilin1,Zhang Xiao1,Li Zenghe1ORCID

Affiliation:

1. Beijing Key Laboratory of Environmentally Harmful Chemical Analysis, College of Chemistry, Beijing University of Chemical Technology, Beijing 100029, China

Abstract

Water contamination by dyes discharged from many industries is an environmental issue of great matter. Electrochemical oxidation is an advanced approach for wastewater treatment. In this study, the composite electrodes of Ti/SnO2-Sb-Ni/rare earth have been modified using rare earth elements (Re) Gd, Ce, Eu, and Er and various molar ratios of tin and nickel intermediate layer, and their electrochemical oxidation effects were scrutinized. To analyze the decolorization performance of the electrodes, Rhodamine B (RhB) dye was utilized as a target pollutant. Accelerated life testing indicated that the longer service life could be observed in Ni (3.5%)/Re and Ni (5%)/ Re electrodes compared with other modified Ni (0%, 1%, and 2%)/Re electrodes. Compared with the color removal efficiencies of the Ni (2%)/Re electrodes, the decolorization rate of 90% after treatment for 60 min and the low energy consumption of 3.621 kW h·m−3 can be achieved at the Ni (2%)/Gd electrode under the experimental condition of 100 mg·L−1 RhB. The best decolorization rate was observed at the Ni (2%)/Re electrodes among other Ni and no adding Ni-doped Re electrodes. The characterization of the electrodes was described, consisting of surface morphology, oxygen evolution potential, and a crystallographic and elemental combination of the coatings.

Funder

Beijing University of Chemical Technology

Publisher

Hindawi Limited

Subject

General Chemistry

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3