Local Biological Reactions and Pseudotumor-Like Tissue Formation in relation to Metal Wear in a Murine In Vivo Model

Author:

Paulus Alexander C.1ORCID,Ebinger Kathrin1,Cheng Xiangyun1ORCID,Haßelt Sandra1ORCID,Weber Patrick1ORCID,Kretzer J. Philippe2ORCID,Bader Rainer3ORCID,Utzschneider Sandra1ORCID

Affiliation:

1. Department of Orthopedic Surgery, Physical Medicine and Rehabilitation, University Hospital of Munich, Ludwig-Maximilians-University, Campus Großhadern, Marchioninistraße 15, 81377 Munich, Germany

2. Laboratory of Biomechanics and Implant Research, Clinic for Orthopedics and Trauma Surgery, Heidelberg University Hospital, Schlierbacher Landstrasse 200a, 69118 Heidelberg, Germany

3. Biomechanics and Implant Technology Research Laboratory (FORBIOMIT), Department of Orthopaedics, University Medicine Rostock, Doberaner Straße 142, 18057 Rostock, Germany

Abstract

Metal wear debris and released ions (CoCrMo), which are widely generated in metal-on-metal bearings of hip implants, are also found in patients with metal-on-polyethylene bearings due to the mechanically assisted crevice corrosion of modular taper junctions, including head-neck and neck-stem taper interfaces. The resulting adverse reactions to metal debris and metal ions frequently lead to early arthroplasty revision surgery. National guidelines have since been published where the blood metal ion concentration of patients must consistently be monitored after joint replacement to prevent serious complications from developing after surgery. However, to date, the effect of metal particles and metal ions on local biological reactions is complex and still not understood in detail; the present study sought to elucidate the complex mechanism of metal wear-associated inflammation reactions. The knee joints in 4 groups each consisting of 10 female BALB/c mice received injections with cobalt chrome ions, cobalt chrome particles, and ultra-high-molecular-weight polyethylene (UHMWPE) particles or PBS (control). Seven days after injection, the synovial microcirculation and knee joint diameter were assessed via intravital fluorescence microscopy followed by histological evaluation of the synovial layer. Enlarged knee diameter, enhanced leukocyte to endothelial cell interactions, and an increase in functional capillary density within cobalt chrome particle-treated animals were significantly greater than those in the other treatment groups. Subsequently, pseudotumor-like tissue formations were observed only in the synovial tissue layer of the cobalt chrome particle-treated animals. Therefore, these findings strongly suggest that the cobalt chrome particles and not metal ions are the cause for in vivo postsurgery implantation inflammation.

Funder

Deutsche Forschungsgemeinschaft

Publisher

Hindawi Limited

Subject

General Immunology and Microbiology,General Biochemistry, Genetics and Molecular Biology,General Medicine

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3