A Clustering Approach to Identify High-Risk Taxi Drivers Based on Self-Reported Driving Behavior

Author:

Rejali Sina1ORCID,Aghabayk Kayvan1ORCID,Shiwakoti Nirajan2ORCID

Affiliation:

1. School of Civil Engineering College of Engineering, University of Tehran, Tehran, Iran

2. School of Engineering, RMIT University, Melbourne, Australia

Abstract

This study aimed to evaluate the driving behavior of taxi drivers in Isfahan, Iran, and assess the probability of a driver being among the high-risk taxi drivers. To identify risky driving behaviors among taxi drivers, the Driver Behavior Questionnaire (DBQ) was used. By collecting data from 548 taxi drivers, exploratory factor analysis identified the significant components of DBQ including “Inattention errors,” “Inexperience errors,” “Lapses,” “Ordinary violations,” and “Aggressive violations.” K-means clustering was conducted to cluster taxi drivers into three risk groups of low-risk, medium-risk, and high-risk taxi drivers based on their self-reported annual traffic crashes and fines. In addition, logistic regressions identified the extent to which drivers’ crashes and traffic fines are related to their driving behavior, and therefore, what aberrant driving behaviors are more important in explaining the presence of taxi drivers in the high-risk cluster. The results revealed that the majority of participants (66.78%) were low-risk taxi drivers. Aggressive violations and ordinary violations were significant predictors of taxi drivers being in the high-risk group, while inattention errors and aggressive violations were significant predictors of being in the medium/high-risk cluster. The findings from this study are valuable resources for developing safety measures and training for new drivers in the taxi industry.

Publisher

Hindawi Limited

Subject

Strategy and Management,Computer Science Applications,Mechanical Engineering,Economics and Econometrics,Automotive Engineering

Cited by 6 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3