Electron transfer processes of coadsorbed Anthracene and N,N-Dimethylaniline on titania-silica

Author:

Eremenko Anna1,Smirnova Natalie1,Yakimenko Oksana1,Starukh Galina1,Worrall David R.2,Williams Siân L.2

Affiliation:

1. Institute of Surface Chemistry of National Ukrainian Academy of Sciences, Kiev 03164, Ukraine

2. Department of Chemistry, Loughborough University, Loughborough, Leicestershire LE11 3TU, UK

Abstract

The effect of titania-silica binaries on the processes of PET and the decay kinetics of the Anthracene (An) fluorescence and An radical cation in presence of the co-adsorbed electron donor N,Ndimethylaniline (DMA) has been studied. The fluorescence of excited An adsorbed on pure silica is quenched by the addition of DMA, while co-adsorption of DMA on Ti/Si binaries resulted in increase of fluorescence intensity of adsorbed An. We suggest that competitive adsorption between DMA and An results in DMA occupying more active “titania” sites causing the shift of An molecules to weaker adsorption sites located on the silica support. An and DMA molecules being adsorbed simultaneously on the surface, effectively produce reduced titanium ions due to an electron transfer process. These data appear to lend weight to the suggestion of a pre-exciplex An-DMA state on the surface and effective PET from the excited molecular pair to the acceptor sites on the surface. These sites may be titania aggregates, or titania ions when there is a low content of Ti in the binaries.

Publisher

Hindawi Limited

Subject

General Materials Science,Renewable Energy, Sustainability and the Environment,Atomic and Molecular Physics, and Optics,General Chemistry

Cited by 4 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3