Affiliation:
1. Department of Chemistry, Florida Institute of Technology, 150 West University Boulevard, Melbourne, Florida 32901, USA
Abstract
The results of the heterogeneous photocatalytic reduction of Fe(VI) in UV-irradiated TiO2 suspensions are presented and suggest indirect observation of the formation of Fe(V) by the photoreduction of Fe(VI) withecb−at TiO2 surfaces. Because Fe(V) selectively and rapidly oxidizes low reactivity pollutants with the production of the non-toxic by-product, Fe(III), the photocatalytic reduction of Fe(VI) has a role in pollution remediation processes. The experiments were conducted as a function of TiO2 suspension concentrations, Fe(VI) concentrations, and pH in basic media. The initial rate of Fe(VI) reduction gave a fractional order with respect to initial Fe(VI) concentrations and adheres to simple Langmuir-Hinshelwood kinetics. Results suggest that the surface reaction(Fe(VI)+ecb−→Fe(V))is the rate-controlling step. The photocatalytic reduction of Fe(VI) in the presence of less reactive nitrogen-containing species (ammonia, cyanate, and fulvic acid) were also investigated. Enhancement in the rate of Fe(VI) reduction was observed. A reaction scheme involving Fe(V) as an intermediate is presented which explains the faster photocatalytic oxidation of pollutants in the presence of Fe(VI).
Funder
Florida Solar Energy Program
Subject
General Materials Science,Renewable Energy, Sustainability and the Environment,Atomic and Molecular Physics, and Optics,General Chemistry
Cited by
17 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献