Affiliation:
1. Department of Industrial & Manufacturing Systems Engineering, The University of Hong Kong, Pokfulam, Hong Kong
Abstract
Competitive market factors, such as more stringent government regulations, larger number of competitors, and shorter product life cycle, in recent years have created more significant pressure on the management in all supply chain parties. To this end, the ability of analyzing and evaluating systems and related operations involving the deployment of complex multiobjective material handling systems is vital for distribution practitioners. In this respect, simulation modeling techniques together with optimization have emerged as a very useful tool to facilitate the effective analysis of these complex operations and systems. In this paper, we apply a multiobjective simulation-based optimization framework consisting of a hybrid immune-inspired algorithm named Suppression-controlled Multiobjective Immune Algorithm (SCMIA) and a simulation model for solving a real-life multiobjective optimization problem. The results show that the framework is able to solve large scale problems with a large number of parameters, operators, and equipment involved.
Cited by
4 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献