Effects of Gamma Irradiation on the Properties of Hydroxyapatite-Collagen-Chitosan-Mg-ZnO Scaffolds for Bone Tissue Engineering

Author:

-Al-Arafat Tusher1ORCID,Ahmed Shawon2,Karmakar Polash Chandra1ORCID,Zohora Umme Salma2,Akhtar Naznin1,Asaduzzaman S. M.1ORCID

Affiliation:

1. Institute of Tissue Banking and Biomaterial Research, Atomic Energy Research Establishment (AERE), Savar, Dhaka 1349, Bangladesh

2. Department of Biotechnology & Genetic Engineering, Jahangirnagar University, Savar, Dhaka 1342, Bangladesh

Abstract

Bone tissue engineering aims to repair diseased or damaged bone that cannot be regenerated naturally. This study is designed to develop biodegradable porous scaffolds as bone substitutes and evaluate the effect of gamma irradiation on these scaffolds for the restoration of defected bone. Here, composite scaffolds (HA-COL-CS-Mg-ZnO) were prepared by the thermally induced phase separation (TIPS) technique using collagen (COL) and chitosan (CS), hydroxyapatite (HA), magnesium (Mg), and zinc oxide (ZnO) at different mass ratios. Thereafter, the scaffolds were subjected to 10 KGy γ-radiation for physical cross-linking and sterilization. The physicochemical and biological properties of the scaffolds were evaluated by Fourier transform infrared spectroscopy-attenuated total reflectance (FTIR-ATR), field emission scanning electron microscopy (FESEM), physical stability (biodegradability, swelling rate, porosity, and density), mechanical properties, biocompatibility, cytotoxicity, and antimicrobial activity against Escherichia coli (ATCC-25922) and Staphylococcus aureus (ATCC-25923). We found that the irradiated scaffold showed enhanced tensile strength and antimicrobial activities which are desirable characteristics of bone-mimicking scaffolds. FESEM revealed that the average pore size decreased from 192.3 to 104.5 μm due to radiation. FTIR-ATR spectra showed that γ-radiation triggered cross-linking in the polymer matrix which improved mechanical strength (0.82 N/mm2 to 1.86 N/mm2) by increasing pore wall thickness. Moreover, the irradiated and nonirradiated scaffolds were biocompatible and noncytotoxic toward the Vero cell line which ensured their suitability for use in vivo. These results demonstrate that sterilization of HA-COL-CS-Mg-ZnO scaffolds with gamma-irradiation substantially improves the physicochemical and morphological features which aid bone tissue regeneration and could be supportive for new bone formation.

Funder

Ministry of Science and Technology, Government of the People’s Republic of Bangladesh

Publisher

Hindawi Limited

Subject

Polymers and Plastics

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3