Affiliation:
1. Department of Mathematics, Faculty of Sciences, University F. ABBAS Setif 1, Setif 19000, Algeria
Abstract
Image restoration is an interesting ill-posed problem. It plays a critical role in the concept of image processing. We are looking for an image that is as near to the original as possible among images that have been skewed by Gaussian and additive noise. Image deconstruction is a technique for restoring a noisy image after it has been captured. The numerical results achieved by the prox-penalty method and the split Bregman algorithm for anisotropic and isotropic TV denoising problems in terms of image quality, convergence, and signal noise rate (SNR) are compared in this paper. It should be mentioned that isotropic TV denoising is faster than anisotropic. Experimental results indicate that the prox algorithm produces the best high-quality output (clean, not smooth, and textures are preserved). In particular, we obtained (21.4, 21) the SNR of the denoising image by the prox for sigma 0.08 and 0.501, such as we obtained (10.0884, 10.1155) the SNR of the denoising image by the anisotropic TV and the isotropic TV for sigma 0.08 and (-1.4635, -1.4733) for sigma 0.501.