Genomic Breakpoint Characterization and Transcriptome Analysis of Metastatic, Recurrent Desmoplastic Small Round Cell Tumor

Author:

Magrath Justin W.1,Flinchum Dane A.1,Hartono Alifiani B.1,Goldberg Ilon N.1,Espinosa-Cotton Madelyn2,Moroz Krzysztof1,Cheung Nai-Kong V.2,Lee Sean B.1ORCID

Affiliation:

1. Department of Pathology and Laboratory Medicine, Tulane University School of Medicine, 1430 Tulane Ave. New Orleans, LA, USA

2. Department of Pediatrics, Memorial Sloan Kettering Cancer Center, New York, NY, USA

Abstract

Desmoplastic small round cell tumor (DSRCT) is a rare pediatric cancer caused by the EWSR1-WT1 fusion oncogene. Despite initial response to chemotherapy, DSRCT has a recurrence rate of over 80% leading to poor patient prognosis with a 5-year survival rate of only 15–25%. Owing to the rarity of DSRCT, sample scarcity is a barrier in understanding DSRCT biology and developing effective therapies. Utilizing a novel pair of primary and recurrent DSRCTs, we present the first map of DSRCT genomic breakpoints and the first comparison of gene expression alterations between primary and recurrent DSRCT. Our genomic breakpoint map includes the lone previously published DSRCT genomic breakpoint, the breakpoint from our novel primary/recurrent DSRCT pair, as well as the breakpoints of five available DSRCT cell lines and five additional DSRCTs. All mapped breakpoints were unique and most breakpoints included a 1–3 base pair microhomology suggesting microhomology-mediated end-joining as the mechanism of translocation fusion and providing novel insights into the etiology of DSRCT. Through RNA-sequencing analysis, we identified altered genes and pathways between primary and recurrent DSRCTs. Upregulated pathways in the recurrent tumor included several DNA repair and mRNA splicing-related pathways, while downregulated pathways included immune system function and focal adhesion. We further found higher expression of the EWSR1-WT1 upregulated gene set in the recurrent tumor as compared to the primary tumor and lower expression of the EWSR1-WT1 downregulated gene set, suggesting the EWSR1-WT1 fusion continues to play a prominent role in recurrent tumors. The identified pathways including upregulation of DNA repair and downregulation of immune system function may help explain DSRCT’s high rate of recurrence and can be utilized to improve the understanding of DSRCT biology and identify novel therapies to both help prevent recurrence and treat recurrent tumors.

Funder

National Cancer Institute

Publisher

Hindawi Limited

Subject

Radiology, Nuclear Medicine and imaging,Oncology

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3