Optimization Design of Actuator Parameters in Multistage Reciprocating Compressor Stepless Capacity Control System Based on NSGA-II

Author:

Jiang Zhinong12ORCID,Zhou Chao13,Wang Yao13ORCID,Zhang Jinjie13,Liu Wenhua1,Sun Xu1

Affiliation:

1. Beijing Key Laboratory of Health Monitoring Control and Fault Self-Recovery for High-end Machinery, Beijing University of Chemical Technology, Beijing, China

2. State Key Laboratory of Compressor Technology (Anhui Provincial Laboratory of Compressor Technology), Anhui, China

3. Compressor Health and Intelligent Monitoring Center of National Key Laboratory of Compressor Technology, Beijing University of Chemical Technology, Beijing, China

Abstract

The capacity control system of reciprocating compressor has great significance for the contribution of energy conservation and emission reduction. The parameters of the actuator and hydraulic system within a reciprocating compressor stepless capacity control system play a decisive role in its control accuracy, mechanical reliability, and mechanical security. The actuators and hydraulic system parameters of the same stage are in conflict with each other. Therefore, the actuator and the multistage reciprocating compressor are studied here, specifically through multiobjective optimization using the Nondominated Sorting Genetic Algorithm (NSGA)-II. The multiobjective optimization design was performed on a two-dimensional (2D) reciprocating compressor test bench. When the spring stiffness of the first stage spring was 27358 N m−1, the spring stiffness of the second stage spring was 23315 N m−1, the inlet oil pressure was 296.62 N, the impact velocity of ejection was 0.4215 m s−1, and the total indicated power deviation was 12.05 kW; the objective functions were optimized. Compared with traditional parameters, the inlet oil pressure, spring stiffness, and impact velocity were all reduced. This parameter optimization design lays the foundations for global optimization designs for stepless capacity control systems.

Funder

National Plan on Key Basic Research and Development

Publisher

Hindawi Limited

Subject

General Engineering,General Mathematics

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3