Hepatic Regeneration: If it Ain’t Broke, Don’t Fix it

Author:

Minuk GY1

Affiliation:

1. Section of Hepatology and Department of Medicine, University of Manitoba, Winnipeg, Manitoba, Canada

Abstract

The capacity for the liver to regenerate after injury or resection has long been recognized, as implied by the legend of Prometheus. Resections of up to 70% of the liver are followed by a sequence of events that generally result in complete restitution of hepatic mass and function. Hypertrophy of hepatocytes begins within hours, with accumulation of amino acids and triglycerides and activation of enzymes that are associated with proliferative activity. Increased DNA synthesis is associated initially with hyperplasia of hepatocytes, and then other cells, which begins in the periportal region and spreads in a wave-like fashion to the pericentral region of the lobule. Quiescent hepatocytes are primed to enter the cell cycle and then proceed through the G1/S and G2/M restriction points, under the influence of a variety of proteins, growth factors (especially hepatocyte growth factor) and cycle dependent kinases. At each stage there is interplay between growth promoters and inhibitors, including transforming growth factor-beta and GABA. Factors that initiate hepatic regeneration are unknown, and might include hepatic depolarization, increases in blood flow, destruction of liver matrix (with release of growth factors), and increased production or expression of growth promoters compared to inhibitors. Regenerative activity increases with the amount of resection to a point, and then relatively declines. Uncontrolled proliferation of liver tissue after resection or injury is not necessarily beneficial, because it could lead to a diversion of resources from the maintenance of hepatic function and to an increased risk of neoplasia. Therefore, it is unclear whether clinicians should attempt to enhance hepatocyte regeneration. Since both hepatic regeneration and metabolic function require energy from high-energy nucleotide triphosphates, especially adenosine triphosphate (ATP), a reasonable strategy might be to augment energy delivery and ATP production. Mortality rates after limited (fewer than 70%) resections and mild or moderate injuries of previously normal livers are low, and supportive care is often sufficient. The prognosis is unclear; however, in cases of more massive resection, resections in the setting of underlying liver disease or cirrhosis, and fulminant hepatic failure, and liver transplantation is still an important option.

Publisher

Hindawi Limited

Subject

Gastroenterology,General Medicine

Cited by 27 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Signaling pathways of liver regeneration: Biological mechanisms and implications;iScience;2024-01

2. ZHX2 emerges as a negative regulator of mitochondrial oxidative phosphorylation during acute liver injury;Nature Communications;2023-11-18

3. Liver regeneration after partial hepatectomy: the upper optimality estimate;V. N. Karazin Kharkiv National University. Ser. Mathematics, Applied Mathematics and Mechanics;2023-06-07

4. Acetylsalicylic acid (Aspirin®) and liver regeneration: experimental study in rats;Revista do Colégio Brasileiro de Cirurgiões;2021

5. Establishing Cut-Offs for Non-Invasive Liver Tests to Detect Cirrhosis at a High Sensitivity;Proceedings of the Latvian Academy of Sciences. Section B. Natural, Exact, and Applied Sciences.;2020-04-01

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3