The Geographical Coexist of the Migratory Birds, Ticks, and Nairobi Sheep Disease Virus May Potentially Contribute to the Passive Spreading of Nairobi Sheep Disease

Author:

Kim KwangHyok12ORCID,Wang HaoNing3ORCID,Cha JinMyong4ORCID,Wang XiaoLong15ORCID

Affiliation:

1. College of Wildlife and Protected Area, Northeast Forestry University, Harbin, China

2. Branch of Biotechnology, State Academy of Sciences, Institute of Animal Genetic Engineering, Pyongyang, Democratic People’s Republic of Korea

3. School of Geography and Tourism, Harbin University, Harbin, China

4. Kyeungsang Sariwon University of Agriculture, Sariwon, Democratic People’s Republic of Korea

5. Key Laboratory of Wildlife Diseases and Biosecurity Management of Heilongjiang Province, Harbin, China

Abstract

Nairobi sheep disease (NSD) is a hemorrhagic vector-borne disease of small ruminants caused by the Nairobi sheep disease virus (NSDV), also known as Ganjam virus (GV). NSDV and GV refer to the same virus. The NSDV has been identified in East Africa, India, Sri Lanka, and China, and NSDV vector ticks can be carried by birds. There is few research on the mechanism of the global cycle and spillover of NSDV. Based on the prediction of the high probability distribution areas of NSD by the maximum entropy model (MaxEnt), the possible passive transport routes of NSDV vector ticks by migratory birds were simulated for further evaluation. The transmission probability of NSDV vector ticks by migrating birds was calculated using evaluations of the parasitism intensity of ticks on migratory birds at start points, the flying burden of parasitized birds, and the attachment coefficient of ticks on birds during migration. A total of 31 potential transport routes were predicted, which, through interaction with each other, constitute a spreading network for NSDV. Seven species of migratory birds were predicted as intra or interregional carriers. Our study first provides measurable support for estimating the possibility of passive migration of NSDV vector ticks by migratory birds that may be potential carriers of ticks and proposes a transmission mechanism between all known natural foci and potential natural foci. These findings highlight the necessity of cooperation in the management of the NSDV in all known and potential natural foci located in different countries, with the aim of blocking global circulation in a cost-effective way. Furthermore, these findings may also contribute to the prevention of other similar diseases.

Funder

Heilongjiang Touyan Innovation Team Program

Publisher

Hindawi Limited

Subject

General Veterinary,General Immunology and Microbiology,General Medicine

Reference75 articles.

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3