Completely Recuperative Supercritical CO2 Recompression Brayton/Absorption Combined Power/Cooling Cycle: Performance Assessment and Optimization

Author:

Han Bing-Chuan1ORCID,Chen Yong-Dong12ORCID,Yu Gai-Ge1ORCID,Wu Xiao-Hong1ORCID,Zhou Tao-Tao3ORCID

Affiliation:

1. Hefei General Machinery Research Institute, Hefei, Anhui 230031, China

2. State Key Laboratory of Compressor Technology, Hefei General Machinery Research Institute, Hefei 230031, China

3. School of Automotive and Transportation Engineering, Hefei University of Technology, Hefei, Anhui 230031, China

Abstract

Excessive heat losses and water consumption in cooling units are significant constraints restricting the application circumstances and performances for the SCO2 Brayton cycle, and the heat exchange capacity in the precooler (PRC) is typically 1.5 times that of power generation. Therefore, this research offers a high-integrated combined power/cooling system in which two waste heat exchangers (WHEs) and a rectifier (RET) are used instead of the PRC to achieve 100% exhaust heat recovery. Each component’s energy and exergy models are developed, and the operational characteristics, coupling relationships, and exergy destruction distribution are examined. Results indicate that, when compared to the Brayton cycle, the thermal and exergy efficiency is considerably increased, and the concentration difference and WHE1 pitch point difference have significant influences on system performance. Further exergoeconomic and optimization analysis reveals that the superior exergy case is mostly recommended for relevant thermal and exergy efficiency increasing rates of 13.7% and 9.17%, respectively, and the unit cost is 81.33% that of the base case. Turbine 1 (TUR1) and main compressor (MCP) are the first and second highest cost rates, respectively, and RET and generator (GEN) account for roughly 34% exergy destruction rate and 20% exergy destruction cost rate, respectively. In addition, reducing heat transfer differences in relevant equipment can further promote system performance.

Funder

Doctoral Science and Technology Foundation of Hefei General Machinery Research Institute

Publisher

Hindawi Limited

Subject

General Materials Science,Renewable Energy, Sustainability and the Environment,Atomic and Molecular Physics, and Optics,General Chemistry

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3