A Highly Discriminative Hybrid Feature Selection Algorithm for Cancer Diagnosis

Author:

Elemam Tarneem1ORCID,Elshrkawey Mohamed1ORCID

Affiliation:

1. Information Systems Department, Suez Canal University, Ismailia 41522, Egypt

Abstract

Cancer is a deadly disease that occurs due to rapid and uncontrolled cell growth. In this article, a machine learning (ML) algorithm is proposed to diagnose different cancer diseases from big data. The algorithm comprises a two-stage hybrid feature selection. In the first stage, an overall ranker is initiated to combine the results of three filter-based feature evaluation methods, namely, chi-squared, F-statistic, and mutual information (MI). The features are then ordered according to this combination. In the second stage, the modified wrapper-based sequential forward selection is utilized to discover the optimal feature subset, using ML models such as support vector machine (SVM), decision tree (DT), random forest (RF), and K-nearest neighbor (KNN) classifiers. To examine the proposed algorithm, many tests have been carried out on four cancerous microarray datasets, employing in the process 10-fold cross-validation and hyperparameter tuning. The performance of the algorithm is evaluated by calculating the diagnostic accuracy. The results indicate that for the leukemia dataset, both SVM and KNN models register the highest accuracy at 100% using only 5 features. For the ovarian cancer dataset, the SVM model achieves the highest accuracy at 100% using only 6 features. For the small round blue cell tumor (SRBCT) dataset, the SVM model also achieves the highest accuracy at 100% using only 8 features. For the lung cancer dataset, the SVM model also achieves the highest accuracy at 99.57% using 19 features. By comparing with other algorithms, the results obtained from the proposed algorithm are superior in terms of the number of selected features and diagnostic accuracy.

Publisher

Hindawi Limited

Subject

General Environmental Science,General Biochemistry, Genetics and Molecular Biology,General Medicine

Reference57 articles.

Cited by 7 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Deciphering Key Genes in Colon Cancer Through Deep Learning Techniques;2024 Third International Conference on Smart Technologies and Systems for Next Generation Computing (ICSTSN);2024-07-18

2. Hybrid wrapper feature selection method based on genetic algorithm and extreme learning machine for intrusion detection;Journal of Big Data;2024-02-01

3. Ensemble of Deep Features for Breast Cancer Histopathological Image Classification;The Computer Journal;2024-01-14

4. Hybrid Gene Selection Methods for High-Dimensional Lung Cancer Data Using Improved Arithmetic Optimization Algorithm;Computers, Materials & Continua;2024

5. Feature Engineering with Microarray Gene Expression Techniques for Asymptomatic Disease Classification;2023 1st DMIHER International Conference on Artificial Intelligence in Education and Industry 4.0 (IDICAIEI);2023-11-27

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3