A Privacy-Preserving Biometric Recognition System with Visual Cryptography

Author:

Ren Lijing1ORCID,Zhang Denghui2ORCID

Affiliation:

1. School of Traffic and Transportation, Shijiazhuang Tiedao University, Shijiazhuang, 050043, China

2. Cyberspace Institute of Advanced Technology, Guangzhou University, Guangzhou 510006, China

Abstract

The popularity of more powerful and smarter digital devices has improved the quality of life and poses new challenges to the privacy protection of personal information. In this paper, we propose a biometric recognition system with visual cryptography, which preserves the privacy of biometric features by storing biometric features in separate databases. Visual cryptography combines perfect ciphers and secret sharing in cryptography with images, thus eliminating the complex operations in existing privacy-preserving schemes based on cryptography or watermarking. Since shares do not reveal any feature about biometric information, we can efficiently transmit sensitive information among sensors and smart devices in plain. To abate the influence of noise in visual cryptography, we leverage the generalization ability of transfer learning to train a visual cryptography-based recognition network. Experimental results show that our proposed method keeps the high accuracy of the feature recognition system when providing security.

Funder

National Basic Research Program of China

Publisher

Hindawi Limited

Subject

General Computer Science

Cited by 3 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Clasificación de criptogramas faciales a través de sus características de textura local;Ingeniería e Investigación;2024-06-27

2. SafePass : Reinventing Digital Access with Visual Cryptography, Steganography, and Multi-Factor Authentication;International Journal of Scientific Research in Computer Science, Engineering and Information Technology;2024-03-14

3. Visual Cryptography: A Detailed Analysis;2022 Fourth International Conference on Cognitive Computing and Information Processing (CCIP);2022-12-23

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3