On the Approximation of Entire Harmonic Functions in n Having Slow Growth

Author:

Kumar Devendra1ORCID,Ghareeb A.2ORCID

Affiliation:

1. Department of Mathematics, M. M. H. College, Model Town, Ghaziabad 201001, U.P., India

2. Department of Mathematics, Faculty of Science, South Valley University, Qena 83523, Egypt

Abstract

The generalized growth of entire transcendental functions in terms of polynomial approximation errors in some Banach spaces has been studied by various authors. The main purpose of this paper is to study the harmonic polynomial approximation of entire harmonic functions in space n , n 3 , in certain Banach spaces. Moreover, the generalized type of harmonic functions of slow growth has been characterized in terms of best harmonic polynomial approximation errors. Our results add new aspects for the case of order zero.

Publisher

Hindawi Limited

Subject

General Mathematics

Reference21 articles.

1. Zu dem wachstumproblem der harmonischen Functionen des drei dimensionalen Raumes;A. Temliakow;Recueil Mathematique,1935

2. Growth of entire harmonic functions in R3

3. Growth of entire harmonic functions in Rn, n ⩾ 2

4. Approximation of entire harmonic functions in ℝ3;G. P. Kapoor;Indian Journal of Pure and Applied Mathematics,1982

5. Fourier coefficients and growth of harmonic functions

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3