A Comparative Cyclic Voltametric Study on Rare Earth (Eu, Sm, Dy, and Tb) Ions Doped La10Si6O27 Nanophosphors for Sensor Application

Author:

Kumar A. Naveen12ORCID,Jnaneshwara D.M.1ORCID,Ravikumar C.R.2ORCID,Murthy H.C. Ananda34ORCID,Prashantha S.C.2ORCID,Kumar M.R. Anil2ORCID,Ajay K.M.5ORCID

Affiliation:

1. Department of Physics, SJB Institute of Technology, VTU, Bangalore-560060, India

2. Research Center, Department of Science, East West Institute of Technology, VTU, Bangalore-560091, India

3. Department of Applied Chemistry, School of Applied Natural Science, Adama Science and Technology University, PO Box 1888, Adama, Ethiopia

4. Department of Prosthodontics, Saveetha Dental College & Hospital, Saveetha Institute of Medical and Technical Science (SIMAT), Saveetha University, Chennai 600077, Tamil Nadu, India

5. Department of Electrical & Electronics Engineering, R.V.College of Engineering, Bengaluru 560059, India

Abstract

The rare earth (RE = Eu, Sm, Dy, and Tb) ions doped La10Si6O27 nanophosphor was synthesized by a simple solution combustion method. The prepared La10Si6O27:RE3+ nanophosphors (LNPs) were subjected to diverse technical tools for exploring their structural, optical, morphological, and electrochemical features. The structural analysis using powder X-ray diffraction (PXRD) patterns revealed the hexagonal oxy apatite phase for LNPs with a crystallite size in the range of 25–50 nm, and the equivalent was affirmed by image analysis via transmission electron microscopy (TEM). Utilizing DRS data, the bandgap energy (Eg) values were recorded for LNPs. Cyclic voltametric (CV), electrochemical impedance spectroscopy (EIS), and sensor studies were performed using a modified carbon paste electrode of LNPs. The modified LNP electrodes were found to be highly effective in sensing paracetamol in acidic medium with a quick response time of 3 secs for sensing the drugs at 1 mM concentration. All the RE ions Eu3+, Sm3+, Dy3+, and Tb3+ (5 mol%)-doped LNPs exhibited the most promising electrochemical sensing characteristics.

Publisher

Hindawi Limited

Subject

General Engineering,General Materials Science

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3