Synthesis and Adsorbent Performance of Modified Biochar with Ag/MgO Nanocomposites for Heat Storage Application

Author:

Venkatesh R.1ORCID,Karthi N.2,Kawin N.3,Prakash T.4ORCID,Kannan C. Ramesh5,Karthigairajan M.6,Bobe Ketema7ORCID

Affiliation:

1. Department of Mechanical Engineering, Saveetha School of Engineering, SIMATS, Chennai, 602105 Tamil Nadu, India

2. Department of Mechatronics Engineering, SNS College of Technology, Coimbatore, 641035 Tamil Nadu, India

3. Department of Mechanical Engineering, Kongunadu College of Engineering and Technology, Trichy, 621215 Tamil Nadu, India

4. Department of Mechanical Engineering, SNS College of Technology, Coimbatore, 641035 Tamil Nadu, India

5. Department of Mechanical Engineering, Dr. Navalar Nedunchezhiyan College of Engineering, Tholudur, 606303, Tamil Nadu, India

6. Department of Mechanical Engineering, Gojan School of Business and Technology, Chennai, 600052 Tamil Nadu, India

7. Department of Mechanical Engineering, Ambo University, Ambo, Ethiopia

Abstract

Heat storage is a major problem in the world. Many research is going on the heat storage application. This research investigates the novel Ag/MgO/biochar nanocomposites for heat storage. Ag/MgO/biochar nanocomposites were fabricated using solvent-free ball milling techniques. According to several analytical measurements, the Ag/MgO nanoparticles in biochar are uniformly dispersed across the carbon interface. This type of adsorbent material has been characterized by different techniques such as X-ray diffraction pattern analysis (XRD), FTIR analysis, scanning electron microscope (SEM), and transmission electron microscope (TEM) as all indicate the surface morphology and successful ball milling synthesis of Ag/MgO nanocomposites. The UV visible spectroscopy wavelength range of AgNPs and MgONPs is 330 nm and 470 nm, respectively. FTIR analysis revealed that different functional groups of modified biochar nanocomposites such as O-H group are 3728 cm-1 and for C-H bond is 932 cm-1, C-O group is 1420 cm-1, and C=O is 1785 cm-1, respectively. Adsorption tests showed that 1.0 gL-1 dosage with 60% phosphate removal, an ion, and 0.2 gL-1 of dosages that had 85% methylene blue decomposition, a charged synthetic dye, were the lowest absorption levels. This research suggests that ball milling offers the advantages of stabilization and chemical adaptability for customized remediation of different atmospheric contaminants. Ball milling is a facile and feasible process to fabricate carbon-metal-oxide nanomaterials.

Publisher

Hindawi Limited

Subject

Surfaces and Interfaces,General Chemical Engineering,General Chemistry

Cited by 35 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3