Influencing Mechanism of Nod-Like Receptor Protein 3 Inflammasome Activation in A375 Cell Activity in Human Cutaneous Malignant Melanoma

Author:

Sulaiman Akebaier1,Lv Jin1,Fan Junwei1,Abuliezi Reyila1,Zhang Qian1,Wan Xuefeng1ORCID

Affiliation:

1. Department of Dermatology, The First Affiliated Hospital of Xinjiang Medical University, Urumqi 830054, Xinjiang Uyghur Autonomous Region, China

Abstract

This work was to investigate mechanism by which mir-22 targeting nod-like receptor protein 3 (NLRP3) inflammasome affected activity of human skin malignant melanoma (MM) A375 cells. Twenty-four mice were rolled into a control group (Group X) and an experimental group (Group Y) randomly. Without treatment in Group X, Group Y established MM model. After cell transfection, the mice were divided into group A (blank group), group B (negative group), group C (miR-22 mimics group), group D (miR-22 inhibitor group), and group E (miR-22 inhibitor+siNLRP3 group). The results were summarized as follows. The level of miR-22 mRNA in Group Y was obviously lower than that in Group X, and levels of NLRP3 and caspase-1 mRNA and NLRP3 and caspase-1 protein in Group Y were greatly higher than those in Group X ( P < 0.05 ). The mRNA levels of miR-22 mRNA in group C were much higher in contrast to those in group A, and the mRNA levels of NLRP3 and caspase-1 were lower. The contrast results in group D and group A were the opposite, P < 0.05 . The levels of NLRP3 and caspase-1 proteins in group C were greatly elevated, and those in group D were decreased compared with those in group A ( P < 0.05 ). Therefore, miR-22 may target and inhibit the activation of the NLRP3 inflammasome to reduce the activity of cutaneous malignant melanoma A375 cells.

Funder

Construction of Information Follow-up Management Platform for Accurate Diagnosis and Treatment of Common and Difficult Skin Diseases in Xinjiang

Publisher

Hindawi Limited

Subject

Immunology,General Medicine,Immunology and Allergy

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3