An Effective Path Planning of Intelligent Mobile Robot Using Improved Genetic Algorithm

Author:

Chen Zhongzhe12ORCID,Xiao Jianzhang12,Wang Guifeng12

Affiliation:

1. College of Mechanical and Electrical Engineering, Jinhua Polytechnic, Jinhua, 321007 Zhejiang, China

2. Key Laboratory of Crop Harvesting Equipment Technology of Zhejiang Province, Jinhua Polytechnic, Jinhua, 321007 Zhejiang, China

Abstract

With the rapid development of the robotics industry, the problem of effective and fast path planning for intelligent mobile robots has always been one of the hot spots in the field of robotics research. Intelligent mobile robot path planning is divided into global path planning and local path planning, and its mathematical modeling and adaptive algorithms are different. Therefore, the research of robot path planning based on improved genetic algorithm is of great significance. This paper mainly studies the robot path planning problem based on improved genetic algorithm. Based on the research of the basic genetic algorithm, the improved genetic algorithm is applied to the mobile four-wheel robot to guide the four-wheel robot to complete path planning and other related tasks. Experiments show that the optimization probability and convergence speed of the genetic algorithm can be improved by improving the genetic algorithm. Studies have shown that evolutionary algebra and population size are inversely proportional to the optimal path length, so it is directly proportional to the search ability. However, as the evolutionary algebra and population size increase, the amount of calculation is also increasing, and the calculation time increases. Comprehensive considerations according to various factors, the best value of population size is 60, the best value of mutation probability is 0.09, the best value of crossover probability is 0.8, and the best value of evolutionary algebra is 150 generations.

Publisher

Hindawi Limited

Subject

Electrical and Electronic Engineering,Computer Networks and Communications,Information Systems

Cited by 9 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3