Huoxue Qianyang Qutan Recipe Protects against Early Renal Damage Induced by Obesity-Related Hypertension via the SIRT1/NF-κB/IL-6 Pathway: Integrating Network Pharmacology and Experimental Validation-Based Strategy

Author:

Wang Mingzhu1ORCID,Li Jianhua1ORCID,Gui Mingtai1ORCID,Lu Bo1ORCID,Yao Lei1ORCID,Zhou Xunjie1ORCID,Shi Moyi1ORCID,Hu Liang2ORCID,Fu Deyu1ORCID

Affiliation:

1. Yueyang Hospital of Integrated Traditional Chinese and Western Medicine, Shanghai University of Traditional Chinese Medicine, Shanghai, China

2. Academy of Integrative Medicine, Shanghai University of Traditional Chinese Medicine, Shanghai, China

Abstract

Obesity is recognized as not only a major contributing factor to cardiovascular diseases but also an independent risk factor for end-stage renal disease. Previous studies have found that Huoxue Qianyang Qutan Recipe (HQQR) could reduce urinary microalbumin in patients with obesity-related hypertension (OBH). However, the renal protective activity of HQQR in OBH and its molecular targets involved remains ambiguous. In this work, we investigate the mechanism of HQQR against OBH-induced early renal damage using integrating network pharmacology and experimental validation-based strategy. First, via network pharmacology, IL-6 is identified as one of the key targets of HQQR against early renal damage in hypertension, and inhibition of inflammation is a crucial process. Second, in in vivo experiments, HQQR can lower blood pressure, lose weight, and restore metabolic abnormalities in OBH rats, which could be associated with the effects on protecting early renal damage. Finally, in the mechanism, HQQR increases SIRT1 mRNA and protein expression consistent with reduction of NF-κB acetylation and suppressed the p65-mediated inflammatory signaling pathway. As a result, HQQR robustly inhibits OBH-induced renal inflammation by reducing IL-6 mRNA and protein levels in the renal tissue and the release of IL-6 in serum of OBH rats. This study aims to provide a multimethod (network pharmacology-animal experiment) and multilevel (component-target-pathway) strategy for the prevention and treatment of OBH-induced target organ damage by traditional Chinese medicine.

Funder

National Natural Science Foundation of China

Publisher

Hindawi Limited

Subject

Complementary and alternative medicine

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3