Affiliation:
1. Department of Industrial Engineering and Management, Peking University, Beijing 100871, China
2. Science and Technology on Special System Simulation Laboratory, Beijing Simulation Center, Beijing 100854, China
Abstract
In order to improve the effect of real-time defect recognition in steel plate online production, this paper studies the method of steel plate defect recognition based on the deep neural network algorithm based on space-time constraints. Moreover, this paper improves the space-time constraint algorithm, optimizes the encryption structure of the traditional ABE scheme, and obtains a neural network feature recognition method based on space-time constraints. In order to process the massive image data stream generated instantaneously and ensure the real-time performance, accuracy, and stability of the detection system, this paper constructs a distributed parallel computing system structure based on the client/server (CC/S) model to obtain an intelligent recognition system. Through experimental research, it can be seen that the deep neural network recognition system based on space-time constraints proposed in this paper has a good effect in the recognition of steel plate defects.
Funder
Beijing Simulation Center
Cited by
1 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献