Multilayer Shielding Design for Intermediate Radioactive Waste Storage Drums: A Comparative Study between FLUKA and QAD-CGA

Author:

Li Wenqian1ORCID,Liu Xuegang1,Li Ming2,Huang Yilin3,Fang Sheng1ORCID

Affiliation:

1. Institute of Nuclear and New Energy Technology, Collaborative Innovation Centre of Advanced Nuclear Energy Technology, Key Laboratory of Advanced Reactor Engineering and Safety, Ministry of Education, Tsinghua University, Beijing, 100084, China

2. Nuclear and Radiation Safety Centre, Ministry of Environmental Protection of the People’s Republic of China, Beijing, China

3. Radiation-Environment Management and Monitoring Station of Guangxi Zhuang Autonomous Region, Guangxi, 530022, China

Abstract

To ensure that the outside dose rate of waste package is below the limitation of national laws and regulations, based on the standard 200L drum, a new drum with inner shielding was proposed for intermediate-level radioactive waste (ILW) storage. For comparison, FLUKA and QAD-CGA were used to verify the shielding design of the ILW storage drums produced in INET with multiple inner shielding layers. The flux and dose were calculated and analyzed for four different cases. In QAD-CGA calculation, it was found that different buildup factors can lead to the considerably different results. A weighted algorithm was proposed to correct QAD-CGA for multilayer shielding cases. In FLUKA calculation, parameter optimization and tailored variance reduction technique (VRT) were used. Quantitative efficiency evaluation of different FLUKA settings using the FOM factor was carried out. The differences in the calculated dose rates results between the FLUKA and QAD-CGA programs are within one order of magnitude. The results of QAD-CGA are generally higher than those of FLUKA. The analysis shows that appropriate corrections in QAD-CGA can make the trend of the calculation results more consistent with the theory. In FLUKA calculation, with optimized setting and VRT adopted, the calculation efficiency can be improved more than 20 times. The results of this study provide not only suggestions for the design of the ILW storage drums but also useful references for other similar work.

Funder

National Natural Science Foundation of China

Publisher

Hindawi Limited

Subject

Nuclear Energy and Engineering

Reference22 articles.

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3