A General Purpose Adaptive Fault Detection and Diagnosis Scheme for Information Systems with Superheterodyne Receivers

Author:

Song Dengwei12,Liu Hongmei1ORCID,Qi Le12ORCID,Zhou Bo12

Affiliation:

1. School of Reliability and Systems Engineering, Beihang University, Xueyuan Road No. 37, Haidian District, Beijing, China

2. Science & Technology on Reliability & Environmental Engineering Laboratory, Xueyuan Road No. 37, Haidian District, Beijing, China

Abstract

A superheterodyne receiver is a type of device universally used in a variety of electronics and information systems. Fault detection and diagnosis for superheterodyne receivers are therefore of critical importance, especially in noise environments. A general purpose fault detection and diagnosis scheme based on observers and residual error analysis was proposed in this study. In the scheme, two generalized regression neural networks (GRNNs) are utilized for fault detection, with one as an observer and the other as an adaptive threshold generator; faults are detected by comparing the residual error and the threshold. Then, time and frequency domain features are extracted from the residual error for diagnosis. A probabilistic neural network (PNN) acts as a classifier to realize the fault diagnosis. Finally, to mimic electromagnetic environments with noise interference, simulation model under different fault conditions with noise interferences is established to test the effectiveness and robustness of the proposed fault detection and diagnosis scheme. Results of the simulation experiments proved that the presented method is effective and robust in simulated electromagnetic environments.

Funder

National Natural Science Foundation of China

Publisher

Hindawi Limited

Subject

Multidisciplinary,General Computer Science

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3