A New Proof of Rational Cycles for Collatz-Like Functions Using a Coprime Condition

Author:

Bairrington Benjamin1ORCID,Mohsen Nabil1ORCID

Affiliation:

1. University of Science and Technology of China, Hefei, China

Abstract

In this paper, we study the bounded trajectories of Collatz-like functions. Fix α , β Z > 0 so that α and β are coprime. Let k ¯ = k 1 , , k β 1 so that for each 1 i β 1 , k i Z > 0 , k i is coprime to α and β , and k i i mod β . We define the function C α , β , k ¯ : Z > 0 Z > 0 and the sequence n , C α , β , k ¯ n , C α , β , k ¯ 2 n , a trajectory of n . We say that the trajectory of n is an integral loop if there exists some N in Z > 0 so that C α , β , k ¯ N n = n . We define the characteristic mapping χ α , β , k ¯ : Z > 0 0,1 , , β 1 and the sequence n , χ α , β , k ¯ n , χ α , β , k ¯ 2 n , the characteristic trajectory of n . Let B Z β be a β -adic sequence so that B = χ α , β , k ¯ i n i 0 . We say that B is eventually periodic if it eventually has a purely β -adic expansion. We show that the trajectory of n eventually enters an integral loop if and only if B is eventually periodic.

Funder

China Scholarship Council

Publisher

Hindawi Limited

Subject

General Mathematics

Reference10 articles.

1. On the motivation and origin of the (3n+1) Problem (Chinese);L. Collatz;J. Qufu Normal University,1986

2. The 3x + 1 Problem and Its Generalizations

3. The Collatz conjecture. A case study in mathematical problem solving

4. Generalized 3x+1 functions and the theory of computation;P. Michel,2010

5. Unpredictable iterations;J. H. Conway,2010

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3