MHC Universal Cells Survive in an Allogeneic Environment after Incompatible Transplantation

Author:

Figueiredo Constança1,Wedekind Dirk2,Müller Thomas1,Vahlsing Stefanie1,Horn Peter A.3,Seltsam Axel14,Blasczyk Rainer1

Affiliation:

1. Institute for Transfusion Medicine, Hannover Medical School, Lower Saxony, 30625 Hannover, Germany

2. Institute for Laboratory Animal Science, Hannover Medical School, Lower Saxony, 30625 Hannover, Germany

3. Institute for Transfusion Medicine, University Hospital Essen, 45147 Essen, Nordrhein-Westfalen, Germany

4. German Red Cross, Blood Services NSTOB, Institute Springe, Lower Saxony, 31832 Springe, Germany

Abstract

Cell, tissue, and organ transplants are commonly performed for the treatment of different diseases. However, major histocompatibility complex (MHC) diversity often prevents complete donor-recipient matching, resulting in graft rejection. This study evaluates in a preclinical model the capacity of MHC class I-silenced cells to engraft and grow upon allogeneic transplantation. Short hairpin RNA targetingβ2-microglobulin (RN_shβ2m) was delivered into fibroblasts derived from LEW/Ztm (RT1l) (RT1-Al) rats using a lentiviral-based vector. MHC class I (RT1-A-) expressing and -silenced cells were injected subcutaneously in LEW rats (RT1l) and MHC-congenic LEW.1W rats (RT1u), respectively. Cell engraftment and the status of the immune response were monitored for eight weeks after transplantation. In contrast to RT1-A-expressing cells, RT1-A-silenced fibroblasts became engrafted and were still detectable eight weeks after allogeneic transplantation. Plasma levels of proinflammatory cytokines IL-1α, IL-1β, IL-6, TNF-α, and IFN-γwere significantly higher in animals transplanted with RT1-A-expressing cells than in those receiving RT1-A-silenced cells. Furthermore, alloantigen-specific T-cell proliferation rates derived from rats receiving RT1-A-expressing cells were higher than those in rats transplanted with RT1-A-silenced cells. These data suggest that silencing MHC class I expression might overcome the histocompatibility barrier, potentially opening up new avenues in the field of cell transplantation and regenerative medicine.

Funder

German Research Foundation

Publisher

Hindawi Limited

Subject

General Immunology and Microbiology,General Biochemistry, Genetics and Molecular Biology,General Medicine

Cited by 23 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3