Myo1b Promotes Premature Endothelial Senescence and Dysfunction via Suppressing Autophagy: Implications for Vascular Aging

Author:

Yu Yi1ORCID,Ren Yuanyuan1ORCID,Li Zi1ORCID,Li Yang1ORCID,Li Yirong1ORCID,Zhang Yan1ORCID,Gui Runlin1ORCID,Cui Yue1ORCID,Qian Lu23ORCID,Xiong Yuyan13ORCID

Affiliation:

1. Key Laboratory of Resource Biology and Biotechnology in Western China, Ministry of Education, Faculty of Life Sciences and Medicine, Northwest University, Xi’an, Shaanxi, China

2. Department of Endocrinology, Xi’an No.3 Hospital, The Affiliated Hospital of Northwest University, Xi’an, Shaanxi, China

3. Xi’an Key Laboratory of Cardiovascular and Cerebrovascular Diseases, Xi’an No.3 Hospital, The Affiliated Hospital of Northwest University, Northwest University, Xi’an, Shaanxi, China

Abstract

Endothelial cell (EC) senescence characterized by an irreversible growth arrest leading to endothelial dysfunction has been implicated in vascular aging and aging-associated cardiovascular diseases. Autophagy plays a crucial role in the modulation of cellular senescence. Our previous showed that myosin 1b (Myo1b), one family of nonfilamentous class-1 myosin, was reported to be involved in the modulation of human smooth muscle cell senescence. However, the role of Myo1b in the modulation of EC senescence with links to autophagy has yet to be elucidated. In this study, we sought to explore the role of Myo1b in endothelial senescence and further elucidate the underlying mechanisms. Here, we show prominent upregulation of Myo1b in senescent ECs in comparison with nonsenescence ECs in both mRNA and protein expression levels. Silencing Myo1b in senescent cells ameliorates endothelial dysfunctions and reverses endothelial senescence phenotypic changes such as senescence-associated-β-galactosidase activity, cyclin-dependent kinase inhibitor p21WAF1, expression of vascular adhesion molecule-1 (VCAM1) and intercellular adhesion molecule-1 (ICAM1), and the senescence-associated cytokines. In contrast, in nonsenescent cells, overexpressing Myo1b promotes endothelial senescence and suppresses autophagy through the impairment of autophagosome and lysosome fusion. The interaction between Myo1b and LRRK2 through Myo1b tail domain promotes intracellular calcium elevation, which results in the inhibition of autophagic flux. In vitro and in vivo aging models, Myo1b knockdown in senescent ECs and wild type-aged mice is able to enhance autophagy and ameliorate aging-associated endothelial dysfunction. Taken together, our studies reveal a new function for Myo1b, that is, to couple LRRK2 assembly to promote an increase in intracellular calcium level, which impairs the autophagosome-lysosome fusion, and ultimately the promotion of EC senescence and vascular aging.

Funder

Education Department of Shaanxi Province

Publisher

Hindawi Limited

Subject

Cell Biology,Aging,General Medicine,Biochemistry

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3