Effect of Fe3O4 Nanoparticles on Mixed POPC/DPPC Monolayers at Air-Water Interface

Author:

Xu Zhuangwei1,Hao Changchun1ORCID,Xie Bin1,Sun Runguang1

Affiliation:

1. School of Physics and Information Technology, Shaanxi Normal University, Xi’an 710062, China

Abstract

Fe3O4 nanoparticles (NPs) as a commonly used carrier in targeted drug delivery are widely used to carry drugs for the treatment of diseases. However, the mechanism of action of between Fe3O4 NPs and biological membranes is still unclear. Therefore, this article reports the influence of hydrophilic and hydrophobic Fe3O4 NPs on mixed 1-palmitoyl-2-oleoyl-sn-glycero-3-phosphocholine (POPC) and 1,2-dipalmitoyl-sn-glycero-3-phosphocholine (DPPC) that were studied using the Langmuir-Blodgett (LB) film technique and an atomic force microscope (AFM). From surface pressure-area (π-A) isotherms, we have calculated the compression modulus. The results showed that hydrophobic Fe3O4 NPs enlarged the liquid-expanded (LE) and liquid-condensed (LC) phase of the mixed POPC/DPPC monolayers. The compressibility modulus of the mixed POPC/DPPC monolayer increases for hydrophilic Fe3O4 NPs, but the opposite happens for the hydrophobic Fe3O4 NPs. The adsorption of hydrophobic Fe3O4 NPs in mixed POPC/DPPC monolayers was much more than the hydrophilic Fe3O4 NPs. The interaction of hydrophilic Fe3O4 NPs with the head polar group of the mixed lipids increased the attraction force among the molecules, while the interaction of hydrophobic Fe3O4 NPs with the tail chain of the mixed lipids enhanced the repulsive force. The morphology of the monolayers was observed by AFM for validating the inferred results. This study is of great help for the application of Fe3O4 NPs in biological systems.

Funder

Shaanxi Normal University

Publisher

Hindawi Limited

Subject

Instrumentation,Atomic and Molecular Physics, and Optics

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3