Analysis of Complex Modal Characteristics of Fractional Derivative Viscoelastic Rotating Beams

Author:

Lu Tianle1,Wang Zhongmin1ORCID,Liu Dongdong1

Affiliation:

1. School of Civil Engineering and Architecture, Xi’an University of Technology, 710048 Xi’an, China

Abstract

For the transverse vibration problem of a fractional derivative viscoelastic rotating beam, the differential equation of the system is obtained based on the Euler–Bernoulli beam theory and Hamilton principle. Then, introducing dimensionless quantities to differential equations and boundary conditions, the generalized complex eigenvalue equations of the system are obtained by the differential quadrature method. The effects of the slenderness ratio, the viscoelastic ratio, the hub radius-beam length ratio, and dimensionless hub speed and fractional order on the vibration characteristics of fractional derivative viscoelastic rotating beams are discussed by numerical examples. Numerical calculations show that when the dimensionless hub speed is constant, the real part of complex frequency increases with the increase of the fractional order, and the higher-order growth trend is more obvious. Through the study of displacement response at different points on the beam, it can be seen that the closer to the free end, the larger the response amplitude. And, the amplitude of response has been attenuated, which is also consistent with the vibration law of free vibration considering damping.

Funder

National Natural Science Foundation of China

Publisher

Hindawi Limited

Subject

Mechanical Engineering,Mechanics of Materials,Geotechnical Engineering and Engineering Geology,Condensed Matter Physics,Civil and Structural Engineering

Cited by 3 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Dynamical analysis of a stochastically excited nonlinear beam with viscoelastic constitution;International Journal of Dynamics and Control;2023-12-26

2. Nonlinear vibration characteristics of accelerating viscoelastic membrane;Journal of Mechanical Science and Technology;2022-09-28

3. Gearbox fault diagnosis based on bearing dynamic force identification;Journal of Sound and Vibration;2021-10

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3