Affiliation:
1. Department of Fluid Mechanics, Faculty of Mechanical Engineering, Budapest University of Technology and Economics, Budapest, Hungary
2. SPS Italiana Pack Systems, Novara, Italy
Abstract
The classical Multiple Traveling Salesmen Problem is a well-studied optimization problem. Given a set ofngoals/targets andmagents, the objective is to findmround trips, such that each target is visited only once and by only one agent, and the total distance of these round trips is minimal. In this paper we describe the Multiagent Planning Problem, a variant of the classical Multiple Traveling Salesmen Problem: given a set ofngoals/targets and a team ofmagents,msubtours (simple paths) are sought such that each target is visited only once and by only one agent. We optimize for minimum time rather than minimum total distance; therefore the objective is to find the Team Plan in which the longest subtour is as short as possible (a min–max problem). We propose an easy to implement Genetic Algorithm Inspired Descent (GAID) method which evolves a set of subtours using genetic operators. We benchmarked GAID against other evolutionary algorithms and heuristics. GAID outperformed the Ant Colony Optimization and the Modified Genetic Algorithm. Even though the heuristics specifically developed for Multiple Traveling Salesmen Problem (e.g.,k-split, bisection) outperformed GAID, these methods cannot solve the Multiagent Planning Problem. GAID proved to be much better than an open-source Matlab Multiple Traveling Salesmen Problem solver.
Subject
Multidisciplinary,General Computer Science
Cited by
12 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献