Vehicle Driving Risk Prediction Model by Reverse Artificial Intelligence Neural Network

Author:

Ding Huizhe12ORCID,Raja Ghazilla Raja Ariffin1ORCID,Kuldip Singh Ramesh Singh1ORCID,Wei Lina2ORCID

Affiliation:

1. Centre of Product Design and Manufacturing, Department of Mechanical Engineering, Faculty of Engineering, University of Malaya, Kuala Lumpur 50603, Malaysia

2. School of Mining and Geomatics, Hebei University of Engineering (Hebei), No. 19 Taiji Road, Handan Economic and Technological Development District, Handan 056038, China

Abstract

The popularity of private cars has brought great convenience to citizens’ travel. However, the number of private cars in society is increasing yearly, and the traffic pressure on the road is also increasing. The number of traffic accidents is increasing yearly, and the vast majority are caused by small private cars. Therefore, it is necessary to improve the traffic safety awareness of drivers and help car manufacturers to design traffic risk prediction systems. The Backpropagation neural network (BPNN) algorithm is used as the technical basis, combined with the MATLAB operation program, to simulate the driving process of the car. Dynamic predictive models are built to predict and analyze vehicle safety risks. Multiple experiments found that: (1) in various simulations, the simulation driving process of MATLAB is more in line with the actual car driving process; (2) the error between BPNN and the actual driving prediction is within 0.4, which can meet the actual needs. Predictive models are optimized to deploy and predict in various traffic situations. The model can effectively prompt risk accidents, reduce the probability of traffic accidents, provide a certain degree of protection for the lives of drivers and passengers, and significantly improve the safety of traffic roads.

Publisher

Hindawi Limited

Subject

General Mathematics,General Medicine,General Neuroscience,General Computer Science

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Vehicular Assistance Using ML Algorithm;2024 International Conference on Communication, Computing and Internet of Things (IC3IoT);2024-04-17

2. How to Utilize Technology to Enhance Profitability;Advances in Finance, Accounting, and Economics;2024-02-23

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3