Affiliation:
1. Huzhou Central Hospital, Huzhou 313000, Zhejiang, China
2. Lishui City People’s Hospital, Lishui 323000, Zhejiang, China
Abstract
This study aimed to explore the effect of deep learning models on lung CT image lung parenchymal segmentation (LPS) and the application value of CT image texture features in the diagnosis of peripheral non-small-cell lung cancer (NSCLC). Data of peripheral lung cancer (PLC) patients was collected retrospectively and was divided into peripheral SCLC group and peripheral NSCLC group according to the pathological examination results, ResNet50 model and feature pyramid network (FPN) algorithm were undertaken to improve the Mask-RCNN model, and after the MaZda software extracted the texture features of the CT images of PLC patients, the Fisher coefficient was used to reduce the dimensionality, and the texture features of the CT images were analyzed and compared. The results showed that the average Dice coefficients of the 2D CH algorithm, Faster-RCNN, Mask-RCNN, and the algorithm proposed in the validation set were 0.882, 0.953, 0.961, and 0.986, respectively. The accuracy rates were 88.3%, 93.5%, 94.4%, and 97.2%. The average segmentation speeds in lung CT images were 0.289 s/sheet, 0.115 s/sheet, 0.108 s/sheet, and 0.089 s/sheet. The improved deep learning model showed higher accuracy, better robustness, and faster speed than other algorithms in the LPS of CT images. In summary, deep learning can achieve the LPS of CT images and show excellent segmentation efficiency. The texture parameters of GLCM in CT images have excellent differential diagnosis performance for NSCLC and SCLC and potential clinical application value.
Subject
Health Informatics,Biomedical Engineering,Surgery,Biotechnology
Cited by
3 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献