Analysis of the Diagnosis Model of Peripheral Non-Small-Cell Lung Cancer under Computed Tomography Images

Author:

Xie Zhonghai1,Zhang Huaizhong2ORCID

Affiliation:

1. Huzhou Central Hospital, Huzhou 313000, Zhejiang, China

2. Lishui City People’s Hospital, Lishui 323000, Zhejiang, China

Abstract

This study aimed to explore the effect of deep learning models on lung CT image lung parenchymal segmentation (LPS) and the application value of CT image texture features in the diagnosis of peripheral non-small-cell lung cancer (NSCLC). Data of peripheral lung cancer (PLC) patients was collected retrospectively and was divided into peripheral SCLC group and peripheral NSCLC group according to the pathological examination results, ResNet50 model and feature pyramid network (FPN) algorithm were undertaken to improve the Mask-RCNN model, and after the MaZda software extracted the texture features of the CT images of PLC patients, the Fisher coefficient was used to reduce the dimensionality, and the texture features of the CT images were analyzed and compared. The results showed that the average Dice coefficients of the 2D CH algorithm, Faster-RCNN, Mask-RCNN, and the algorithm proposed in the validation set were 0.882, 0.953, 0.961, and 0.986, respectively. The accuracy rates were 88.3%, 93.5%, 94.4%, and 97.2%. The average segmentation speeds in lung CT images were 0.289 s/sheet, 0.115 s/sheet, 0.108 s/sheet, and 0.089 s/sheet. The improved deep learning model showed higher accuracy, better robustness, and faster speed than other algorithms in the LPS of CT images. In summary, deep learning can achieve the LPS of CT images and show excellent segmentation efficiency. The texture parameters of GLCM in CT images have excellent differential diagnosis performance for NSCLC and SCLC and potential clinical application value.

Publisher

Hindawi Limited

Subject

Health Informatics,Biomedical Engineering,Surgery,Biotechnology

Cited by 3 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3