Fuzzy-Swarm Intelligence-Based Short-Term Load Forecasting Model as a Solution to Power Quality Issues Existing in Microgrid System

Author:

Teferra Demsew Mitiku1ORCID,Ngoo Livingstone M. H.2,Nyakoe George N.3

Affiliation:

1. Pan African University Institute for Basic Science, Technology and Innovation (PAUSTI), Nairobi, Kenya

2. Department of Electrical & Communications Engineering, Multimedia University of Kenya, Nairobi, Kenya

3. Department of Electrical Engineering, Jomo Kenyatta University of Agriculture and Technology, Nairobi, Kenya

Abstract

Load demand is highly stochastic and uncertain. This is because it was highly influenced by a number of variables like load type, weather conditions, time of day, the seasonality factor, economic constraints, and other randomness effects. The loads are categorized as holiday loads (national and religious), weekdays, and weekend days. The nonlinearity and uncertain characteristics of electrical load in a microgrid are one of the major sources of power quality problems in a microgrid system, and they can be handled using an accurate load forecast model. The fuzzy load prediction model can effectively handle these nonlinearity and uncertainty characteristics to have an accurate load forecast, but the main challenge with this model is its inability to accommodate a large volume of historical load and weather information when the membership function of the input and output fuzzy variables and the number of the fuzzy rules are tremendous. The swarm intelligence load forecast model based on particle swarm optimization algorithms can improve the limitations of the fuzzy system and increase its forecasting performance. The parameters of time, temperature, historical load, and error correction factors are considered as the Fuzzy and Fuzzy-PSO model input variables, while the forecasted industrial load is the only output variable. The Gaussian membership function is considered for both the input and output fuzzy variables. A 3-year historical hourly load data of an Ethiopian industrial system is used to train and validate both prediction models. The mean absolute percentage error (MAPE) is used to evaluate the performance of these prediction models. The Fuzzy-PSO load prediction model shows results that have superior performance to the fuzzy-alone load prediction results.

Funder

Pan-African University Institute of Basic Science, Technology and Innovation

Publisher

Hindawi Limited

Subject

Electrical and Electronic Engineering,General Computer Science,Signal Processing

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3