Artificial Intelligence in Agricultural Picking Robot Displacement Trajectory Tracking Control Algorithm

Author:

Wu Zhipan1,Du Huaying2ORCID

Affiliation:

1. School of Computer Science and Engineering, Huizhou University, Huizhou, 516007 Guangdong, China

2. School of Information Technology, City College of Huizhou, Huizhou, 516025 Guangdong, China

Abstract

With the development and leap of artificial intelligence technology, more and more robots have penetrated into all walks of life. Today’s agriculture is changing in the direction of modernization and automation. On the one hand, because of rising labor costs, it cannot afford to consume a large amount of labor for agricultural operations. On the other hand, the population is growing rapidly, and traditional agricultural production, picking, and other links have been unable to keep pace with the development of the times. Therefore, it is very necessary to use artificial intelligence technology to transform traditional agriculture. The purpose of this paper is to use artificial intelligence technology to plan, track, and optimize the displacement trajectory of the agricultural picking robot, so as to improve the working efficiency of the picking robot. In this paper, the neural network, the D-H modeling method of the manipulator, and the forward and reverse motion of the manipulator are explained and analyzed, and based on the relevant algorithms of neural network, the manipulator is modeled, and then the, forward and reverse motion of the manipulator is analyzed in detail, and the digital model of the picking robot is constructed. Then, the angle and motion speed of each joint of the robot are analyzed to reduce the motion trajectory error caused by friction and other factors. Then, the simulation experiment of the displacement trajectory tracking control is carried out, and the linear trajectory motion and the arc trajectory motion are deeply analyzed, and the axis error is greatly reduced after 6 iterations. Finally, the displacement trajectory is optimized. The optimized total movement time is shortened by 6.84 seconds, which enables the picking robot to not only ensure work efficiency but also accurately complete the planned displacement trajectory. After continuous experiments on the algorithm model and the picking robot, the actual trajectory of the picking robot at 0.7 seconds can be expected. The trajectories are completely coincident, indicating that the neural network plays a very important role in the trajectory research of picking robots.

Funder

Special Fund Project for Rural Revitalization Strategy of Bureau of Science and Technology of Huizhou Municipality

Publisher

Hindawi Limited

Subject

Electrical and Electronic Engineering,Computer Networks and Communications,Information Systems

Reference33 articles.

1. Fixed-time trajectory tracking control for nonholonomic mobile robot based on visual servoing

2. Trajectory Tracking Control of Robot Manipulators Based on U-Model

3. A Symplectic Instantaneous Optimal Control for Robot Trajectory Tracking With Differential-Algebraic Equation Models

4. Tip-trajectory tracking control of a deployable cable-driven robot via output redefinition;S. A. Khalilpour;Multibody System Dynamics,2020

5. Trajectory tracking control of robot manipulator based on RBF neural network and fuzzy sliding mode;F. Wang;Cluster Computing,2017

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3