Affiliation:
1. School of Automotive Engineering, Hubei University of Automotive Technology, Shiyan 442002, China
2. Key Laboratory of Automotive Power Train and Electronics (Hubei University of Automotive Technology), Shiyan 442002, China
3. Institute of Automotive Engineers, Hubei University of Automotive Technology, Shiyan 442002, China
Abstract
In this paper, a car-following model considering various driving styles is constructed to fulfill the personalized needs of different users of autonomous vehicles. First, according to a set of selection rules, car-following events are selected from the Next Generation Simulation (NGSIM) dataset, and then through an unsupervised machine learning method, the extracted data are divided into two styles, i.e., conservative and aggressive. Statistical analysis is then conducted to analyze the differences in vehicle speed, acceleration, desired time headway, and so on between both driving styles. Based on the analysis, a car-following model based on model predictive control is designed. Experimental results from testing data show that the proposed car-following models demonstrate different driving styles in terms of safety, comfort, and effectiveness. The conservative driving model is safer and more comfortable than the radical driving model, but the driving efficiency is low.
Funder
Educational Commission of Hubei Province of China
Subject
General Engineering,General Mathematics
Cited by
10 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献