Apatinib Functioned as Tumor Suppressor of Synovial Sarcoma through Regulating miR-34a-5p/HOXA13 Axis

Author:

Feng Qi1,Wang Donglai1,Guo Peng1,Zhang Zibo1,Feng Jiangang1ORCID

Affiliation:

1. Department of Orthopedics, The Fourth Hospital of Hebei Medical University, Shijiazhuang, 050011 Hebei Province, China

Abstract

Objective. Synovial sarcoma is a rare malignant tumor. The role of apatinib in synovial sarcoma remains unclear. In this study, we aimed to determine the biological functions and the potential molecular mechanism of action of apatinib in synovial sarcoma. Methods. SW982 cells were stimulated with apatinib. The relative expression of the genes was determined by performing qPCR. Protein levels were evaluated by western blot and immunohistochemistry assays. Proliferation, apoptosis, migration, and invasion of SW982 cells were determined by the CCK-8 assay, clone formation assay, flow cytometry, wound healing, and the transwell assay, respectively. Additionally, SW982 cells were injected into mice to induce synovial sarcoma. Results. Apatinib decreased the proliferation, migration, and invasion but increased the apoptosis of SW982 cells. Apatinib repressed tumor growth in vivo and elevated miR-34a-5p in SW982 cells. The inhibition of miR-34a-5p repressed the reduction of proliferation, migration, and invasion and also the elevation of apoptosis in apatinib-treated SW982 cells. The luciferase activity decreased after cotransfection of the miR-34a-5p mimic and the wild-type HOXA13 vector. Additionally, an increase in miR-34a-5p repressed the levels of HOXA13 mRNA and protein. Moreover, HOXA13 reversed these patterns caused by the inhibition of miR-34a-5p in apatinib-treated SW982 cells. Conclusion. Apatinib elevated miR-34a-5p and reduced HOXA13, leading to a significant decrease in proliferation, migration, and invasion, along with an enhancement of apoptosis in SW982 cells. Apatinib suppressed tumorigenesis and tumor growth in SW982 cells in vivo.

Publisher

Hindawi Limited

Subject

Applied Mathematics,General Immunology and Microbiology,General Biochemistry, Genetics and Molecular Biology,Modeling and Simulation,General Medicine

Cited by 3 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3