Affiliation:
1. School of Electric and Automation Engineering, Tianjin University, Tianjin 300072, China
2. Aeronautical Automation College, Civil Aviation University of China, Tianjin 300300, China
Abstract
This paper describes the design of a nonlinear robust adaptive controller for a flexible hypersonic vehicle model which is nonlinear, multivariable, and unstable, and includes uncertain parameters. Firstly, a control-oriented model is derived for controller design. Then, the model analysis is conducted for this model via input-output (I/O) linearized technique. Secondly, the sliding mode manifold is designed based on the homogeneity theory. Then, the adaptive high order sliding mode controller is designed to achieve the tracking for hypersonic vehicle where the upper bounds of the uncertainties are not known in advance. Furthermore, the stability of the system is proved via the Lyapunov theory. Finally, the Monte-Carlo simulation results on the full-order nonlinear model with aerodynamic uncertainties are provided to demonstrate the effectiveness of the proposed control strategy.
Funder
National Natural Science Foundation of China
Subject
General Engineering,General Mathematics
Cited by
6 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献